1 Gauss-Markov Theorem

If \(E(\boldsymbol{y}) = \boldsymbol{X\beta}\), \(\boldsymbol{X}\) has full rank and var\((\boldsymbol{y})=\sigma^2\boldsymbol{I}\), then the best linear unbiased estimator for \(\boldsymbol{\beta}\) is \(\hat{\boldsymbol{\beta}}=(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}\).

Proof:

The unbised part is obivious, \(E((\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y})=(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{X\beta}=\boldsymbol{\beta}\)

โ€œBestโ€ here means minimum variance.

Assume that there is another linear unbiased estimator \(\tilde{\boldsymbol{\beta}} = a^T\boldsymbol{y}\).

We have,

\[\begin{equation} E(\tilde{\boldsymbol{\beta}}) = \boldsymbol{\beta} = a^T \boldsymbol{X} \boldsymbol{\beta} \quad \text{and} \quad a^T \boldsymbol{X} = I \tag{1.1} \end{equation}\]

\[\begin{equation} \begin{aligned} \text{cov}(\tilde{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}},\hat{\boldsymbol{\beta}}) &= \text{cov}(a^{T} \boldsymbol{y} - \left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}, \left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y})\\ &= \sigma^2 (a^T - \left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T})I(\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1})\\ &= \sigma^2 (\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} - \left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1})\\ &= \mathbf{0} \end{aligned} \tag{1.2} \end{equation}\]

\[\begin{equation} \begin{aligned} \text{var}(\tilde{\boldsymbol{\beta}}) &= \text{var}(\tilde{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}})\\ &= \text{var}(\tilde{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}) + \text{var}(\hat{\boldsymbol{\beta}}) + 2\text{cov}(\tilde{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}},\hat{\boldsymbol{\beta}})\\ &\ge \text{var}(\hat{\boldsymbol{\beta}}) + 2\text{cov}(\tilde{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}},\hat{\boldsymbol{\beta}}) \\ &= \text{var}(\hat{\boldsymbol{\beta}}) \end{aligned} \tag{1.3} \end{equation}\]

Hence, \(\hat{\boldsymbol{\beta}}\) is the best linear unbiased estimator(BLUE) for \(\boldsymbol{\beta}\).